
STN 2-1 Topic:
Rapid Application

Development (RAD)

In This Issue :
Rapid Application Development:
A Brief Overview 1

Rapid Prototyping:
DACS Track at STC ’98 2

Importance of Software
Prototyping 3

Rapid Prototyping and
Incremental Evolution 4

Disciplined Rapid Application
Development 5

Book Review: Pressman’s
Software Engineering:
A Practitioner’s Approach 6

DTIC’s STINET Service 15

DACS Product &
Services Order Form Insert

Your Source for Information in
Software Engineering Technology.

Rapid Application Development (RAD):
A Brief Overview
by Morton A. Hirschberg - U.S. Army Research Laboratory

Continued on page 7

Volume 2 Number 1

Rapid Application Development
(RAD), a revolutionary software
archetype of the 1990’s, while
living up to its promise is still a
fertile area for continued
research and additional
capitalization. This is evidenced
by recent workshops at the
University of Southern
California; Center for Software
Engineering (June 1997 and
March 1998), the Software
Productivity Consortium
Workshop in Herndon, VA
(November 1997), the Software
and Systems Engineering
Productivity Project of the
Microelectronics and Computer
Technology Corporation,

Austin, TX, and the Software
Technology Conference Panel
(April 1998). With little variation
the tenets of RAD are essentially
those of software development in
general: methodology or choice
of architectures and tools,
requirements and design
analyses, selection of personnel
and management, construction,
and implementation and support.
What then sets RAD apart is a
very structured approach
typically relying on small well-
trained teams, use of evolutionary
prototypes, and rigid limits on
development time fames. In
summary, the goals of RAD are:
faster, better, cheaper.

Introduction

STN

The Tenth Annual Software
Technology Conference (STC)
will be held 19-23 April 1998 at
the Salt Palace Convention
Center in Salt Lake City, Utah.
“Knowledge Sharing - Global
Information Networks” is the
theme of this year’s conference.
The DACS is sponsoring a
session on Rapid Prototyping/
Rapid Application Development
(RAD). RAD is also the theme of
this issue of Software Tech
News. Three of the four DACS
guests to present papers at the
STC summarize their positions in
this issue. In addition, we present
Morton Hirschberg’s overview of
RAD.

Mr. Larry Bernstein, founder of
Have Laptop - Will Travel,
argues there is no best way to
produce software. He states that
current theory is not adequate for
analyzing the dynamic behavior
of software systems under
varying loads. He concludes by
listing seven reasons that
prototyping addresses
fundamental needs of software
processes.

Rapid Prototyping: DACS Track at STC ‘98
DoD DACS Staff

Dr. Stephen E. Cross, director of
the Software Engineering
Institute (SEI), discusses
progress in software engineering,
risks associated with current
practices, especially in the
development of “unprecedented
systems,” and a RAD approach
that addresses these risks. Dr.
Cross emphasizes the need for a
disciplined RAD methodology,
and outlines a six step process to
provide the needed rigor.

STC Contact Information:

Ms. Dana Dovenbarger
dovenbar@oodis01.hill.af.mil

or

Ms. Lynne Wade
wadel@software.hill.af.mil

Voice: (801) 777-7411
DSN: 777-7411

Fax: (801) 775-4932

http://www.stc98.org

Major David A. Dampier, Ph.D.,
Professor at the National Defense
University, Fort Lesley J.
McNair, Washington, DC, argues
for the need to proceed from
prototypes to a system delivered
to the user more quickly than is
possible with today’s technology.
Major Dampier envisions the use
of software tools to quickly
produce prototypes that can be

delivered to the user. These tools
will be embedded in an
incremental software
development methodology.

Mr. Bernstein, Dr. Cross, and
Major Dampier will elaborate
their views further at the STC. In
addition, Dr. Erik G. Mettala,
Executive Vice President of
MCC, will present his
perspective on RAD at the STC.

Don’t forget to visit the DACS
booth (#238) at STC ‘98!

2

Visit the DACS Home Page for great
resources on Rapid Prototyping and 16
other Software Technology Topic Areas.

http://www.dacs.dtic.mil

STN3

Importance of Software Prototyping
Larry Bernstein - Have Laptop - Will Travel

Continued on page 9

Modern software development
demands the use of Rapid
Application Prototyping.
Professor Luqi at the Naval
Postgraduate School coined the
term “Computer Aided
Prototyping” to describe this
work. Her leadership showed its
effectiveness in gaining
understanding of the
requirements, reducing the
complexity of the problem and
providing an early validation of
the system design. For every
dollar invested in prototyping,
one can expect a $1.40 return
within the life cycle of the
system development.

Dr. Barry Boehm's experiments
showed that prototyping reduces
program size and programmer
effort by 40%. It is the
technology that is the foundation
for his Spiral development
method. Prototyping is being
used successfully to gain an early
understanding of system
requirements, to simplify
software designs, to evaluate user
interfaces and to test complex
algorithms. It is a best-in-class
software approach.

Fully 30 to 40% of system
requirements will change without
prototyping. Rapid Application
Prototyping provides a look at
the dynamic states of the system
before we build it, whereas most
other software engineering
focuses on the source code. The

special problems of reliability,
throughput and response time as
well as system features are
addressed in the best prototypes.
A new field of study, Software
Dynamics, will emerge once
Rapid Application Prototyping is
widely practiced. It will focus on
quantitative analysis of how
software performs under various
loads and include a set of design
constraints that will make it
possible for us to build
components that can be hooked
together without exhaustive
coverage testing.

Software is hard because it has a
weak theoretical foundation.
Most of the theory that does exist
focuses on the static behavior of
the software, analysis of the
source listing. There is little
theory on its dynamic behavior,
how it performs under load. To
avoid serious network problems
software systems are over-
engineered with plenty of
bandwidth for two or three times
the expected load. Without
analysis of the dynamic behavior,
application designers have no
idea of the resources they will
need once their software is
operational. Software has the
awful propensity to fail with no
warning. Even after we find and
fix a bug, how do we restore the
software to a known state, one
where we have tested its
operation? For most systems,

this is impossible except with lots
of custom design that is itself
error-prone. Software
prototyping has proven its mettle
in helping designers avoid these
problems in their production
systems.

Much has been written about the
best way to develop software
applications. But there is no "best
way." Both prototyping and
requirements are necessary. The
tried-and-true process of
synthesis and analysis is used to
solve software-engineering
problems. Bottom-up is
synthesis. Top-down is analysis.
Bottom-up is prototyping.
Top-down is developing
requirements. Prototyping is the
best way to encourage synthesis.
Prototyping also eases
communication with the
customer and with the designer.
Formal written requirements are
needed to establish a clear
definition of the job, to control
changes and to communicate the
system capabilities between the
customer and the developer.

So where does this leave us?
Start with an English language
written statement of a problem
and broadly outline its solution.
Now build a prototype for the
elements where you need insight.
Analyze the prototype using
computer aided prototyping

STN
Rapid Prototyping and Incremental Evolution
David A. Dampier - National Defense University

Footnotes:

1. Luqi and Ketabchi, M., “A Computer-Aided Prototyping System”
IEEE Software, March 1988.

4

Software development is no
longer an enterprise where the
traditional waterfall method of
system construction is
acceptable. Information
technology is changing at a pace
that requires complete system
development and fielding in less
than 18 months. This is due in
part to faster technology
insertion, and in part by
increased user expectations.
Both reasons provide justification
for changing the way software is
built and fielded. Increased user
expectations require that we
involve the user more in the
requirements engineering
process, and deliver the software
to the user much more quickly.
Faster technology insertion
requires that we incorporate new
technology into existing products
much faster and with less rework.

A new software evolution
paradigm is needed to
accomplish these goals, along
with the automated tools to
realize the benefits. Computer-
Aided Prototyping is one such
method that incorporates the
goals and opinions of the user
from the beginning of the
software evolution process,
throughout the lifecycle, and into
retirement. Automated tools, like
the Computer-Aided Prototyping
System (CAPS)[1], assist the
software developer in building
executable prototypes of a

software system very quickly,
involving the user in an iterative
build-execute-modify loop until
the user is satisfied with the
demonstration of the prototype.
The prototype is then used to
build the final version of the
software through the use of the
architecture included in the
prototype, as well as the
validated set of requirements
constructed during the
prototyping process. The
resulting final version is
delivered relatively quickly,
hopefully before the user’s
requirements have an opportunity
to change.

This is often not sufficient to
satisfy some users. If the
demonstration of a prototype to a
customer results in the validation
of the requirements for that
system, the user may want to take
the prototype as is. Since most
prototypes are not industrial
strength, this may not be
possible. The need outlined here
is for a system, like CAPS, that
will result in a version of the
system that can be delivered to
the customer immediately upon
validation. The system could be
used as it is until it no longer
satisfies the user’s requirements.
When the user’s requirements do
change, new requirements can be
incorporated into a next version
of the system by using the same
iterative process where the

fielded version of the system
provides the base version of the
process. This incremental
evolution process can proceed
throughout the life of the system.

Professors Luqi and Berzins of
the Naval Postgraduate School ,
along with a myriad of graduate
students and visiting researchers,
have spent many years develop-
ing CAPS [1]. Their efforts have
resulted in a system that can be
used to build executable
prototypes of embedded real-time
systems. These prototypes are
useful for validating require-
ments through demonstrations to
customers, but are not practical
for providing the kind of
deliverable version of a software
system discussed in this article.

CAPS relies on external support
for building graphical user
interfaces, and manual translation
of requirements into prototypes.
This manual translation is
problematic. The possibility of
misinterpretation by the designer
could lead to wasted effort in the
prototype building process.
Prototypes generated using
CAPS generally lack robustness
and portability. It is easy to build
prototypes that do precisely as
expected as long as the proper
inputs are made, and use follows
the designer’s expectations. If
improper inputs are made, and
the designer has not built
sufficient error handling into the

Continued on page 12

STN

Toward Disciplined Rapid Application Development
Stephen E. Cross - Director, Software Engineering Institute

Continued on page 10

5

As the director of the Software
Engineering Institute, I am often
asked to explain why progress in
software engineering has not kept
pace with progress in other
engineering fields. The advances
in computer hardware,
characterized by phenomenal
increases in processor speed and
memory capacity associated with
decreases in size and cost are the
most cited progresses. I contend
that similar progress has been
made in the engineering of
software-intensive systems. I
suggest an approach to
disciplined Rapid Application
Development (RAD) that builds
on the progress made in software
engineering during the past 30
years.

Consider briefly the progress of
the past 30 years. During the
1970s, the age of “programming
productivity,” the creation of new
high-order languages, tools, and
development methodologies
enabled programmers to improve
their productivity by one to two
orders of magnitude. During the
1980s, the age of “software
quality,” the focus was on
software processes and
continuous process improvement.
Quality results have been
published in the literature for the
past couple of years (for
example, see [1], [2], or [3]) and
indicate improvements in an
order of magnitude range along
several dimensions (decreased
defects, increased productivity,

decreased cycle time, decreased
number of personnel required to
achieve results, and decreased
percent rework after release).
The decade of the 1990s is the
age of “Internet time.” The
advent of the Internet and
associated new software
technologies (for example, Java
and the widespread use of object
technology) enables software
developers to field products in
cycle times of 6 months or less.
The combination of best
practices that have evolved over
the past 30 years in productivity
approaches, quality
improvement, and technology is
impressive and matches progress
in other fields of engineering.
Taken collectively, they form an
arsenal of tools (rather than the
proverbial “silver bullet”) with
which to attack software
development.

While the progress is real and
arguably impressive, the reasons
for failures in software
development are largely the same
today as they were 30 years ago.
In a 1988 U.S. Air Force Science
Advisory Board Study [4], three
common reasons were cited for
failure (where failure ranges
from excessive cost and/or
schedule delays to never fielding
a system).

1. Risks associated with
teams. By this was meant
that if a team of developers,
acquirers, end users, and
systems maintainers (and
their management) had not
worked together before and
did not learn to
communicate effectively,
they were not likely to
develop a successful system
without schedule delays or
cost overruns. Other risks
cited were the lack of well-
defined or well-understood
processes.

2. Risks associated with
technology. Teams that
pursued a new technical
approach (for example, the
first foray into client-server
computing) found that the
lack of experience with a
new technology,
architecture, or development
approach contributed to
failure.

3. Risk associated with
requirements. By far the
most often-cited reason for
failure was poor
management of requirements
characterized by frequently
changing requirements,
requirements that were not
well understood, and
requirements proliferation.

STN6
Book Review: Software Engineering: A Practitioner’s Approach,
Fourth Edition by Roger S. Pressman
Reviewed by Marshall Potter, Office of the Director, Defense Research and Engineering

Continued on page 13

This book, which is now in its
fourth edition, is one of the
classic texts on Software
Engineering. It is designed for
both the novice and experienced
software engineer, and all readers
will find an abundant amount of
material from which they can
learn. In this book, you will find
not only cogent discussions on
the key components of Software
Engineering, but links and
references for further study. One
of its new innovative features is
the integration of the World Wide
Web addresses into the text. This
makes the text a virtual
encyclopedia. The fourth edition
is considerably more than a
simple update and provides a
significant improvement by
providing extensive coverage of
both new and evolving strategies
and technologies that are core to
effective system developments.

The book is divided into 30
chapters that are organized into
five parts. The first part covers
both the software product and its
process. Pressman carefully
explains what software is and
why we continue to struggle to
build high quality systems. He
goes into some detail on what
myths continue to exist and
categorizes them from three
perspectives: management,
customer and practitioner. This
division is vitally important, as
one can’t develop high quality
software without addressing all
three perspectives. In chapter 2,
he introduces both the SEI
Software Process Model and the

various process or life cycle
models that have been used over
the past three decades. These
include a gamut of models
including the linear sequential
model (waterfall), the
prototyping model, the Rapid
Application Development (RAD)
model, and several evolutionary
process models including the
incremental, spiral, component
assembly, and concurrent
development. He closes this
section with an introduction on
the formal methods model, fourth
generation techniques and
process technology. As can be
seen, he covers not only what has
been used, but also new and
emerging techniques.

Part two of the text is devoted to
Managing Software Projects. I
especially welcome this
introduction to management in
the early part of the text. I
believe that management and
management science, from both
the engineer’s and computer
scientist’s perspectives, is often
ignored or is added as an
afterthought. Pressman by
locating this important material

up front, signals the importance
he gives to the topic. The author
addresses management from the
perspective of the three P’s;
people, problem and process. In
chapter 3, he exhibits how new
efforts such as the SEI’s People
Management - Capability
Maturity Model (PM-CMM),
tools and techniques for
addressing the problems and their
risks and frameworks for process
definition and execution are
becoming common concepts in
the most successful software
development organizations. He
addresses software management
as the “umbrella activity” that
begins before any technical
activity is initiated and continues
throughout the definition,
development and maintenance of
computer software. As the
author truly knows, management
is fundamental for success, and I
would therefore have liked to
have seen more emphasis and
references on traditional
management science. Other
authors, such as Thayer and
Reifer, have shown how the
classical management model of
planning, organizing, staffing,
directing and controlling directly
relate to successful software/
systems engineering programs. I
would have liked to have seen
this framework used in this
section as it would have provided
a unifying architecture for the
material that Pressman discusses
in the following chapters.

McGraw-Hill ISBN 0-07-052182-4

STN7

The Search for the
Universal Architecture
Much as the search for the Holy
Grail, software developers are
continually seeking the universal
architecture. One of the strategies
of RAD is an up front investment
in producing a suitable
architecture and populating it
with just the right tool suite. At
the core of development is
utilization, and although not a
strict dictum, the use of the
Spiral Model allows incremental
and repetitive development. The
use of Object-Oriented methods
is encouraged to speed
development and allow for
reduced rework and possible
reuse. Automated code
generators such as the
Computer-Aided Prototyping
System (CAPS) replaces slow
hand written code and minimizes
coding errors. RAD also allows
for users to employ their own
query and update languages,
report generators, decision
support languages, as well as
specification languages. This
tailoring and flexibility in the
rapid production of prototypes,
products, and systems is
mitigated by domain specificity
which brings order out of
apparent chaos.

Will my Ship Sail on Land
as Well as the Sea
One of my favorite fairy tales
revolves around manufacturing a
ship that will sail on land as well
as the sea. The successful
inventor clearly states the

RAD: A Brief Overview
Continued from page 1

requirements in the problem
statement or statement of work
(SOW) and then focuses on the
design and then construction of
such a vehicle. He stays on the
critical path throughout the
development without any
sacrifice of high quality. In the
end, the user’s needs are fully
met. Formal requirements
establish a clear definition of the
tasks. They also are used to
communicate the system
capabilities among the customer,
user, and developer.
Requirements should include
design features, performance
goals, and schedule and cost
estimates. The use of the
Software Engineering Institute’s
(SEI) Capability Maturity Model
(CMM) can be an invaluable
resource in suggesting what
should be done by having a well
defined and well understood
processes. An important goal of
RAD is to keep the time between
design and delivery as short as
possible. So the use of cost
estimators such as the COCOMO
model, to name but one, and
PERT charts to stay on the
critical path, to name another, are
highly encouraged.

Who’s on First
RAD depends upon continuous,
high quality, production. The
optimal is a team of users,
acquirers and developers who
can communicate effectively and
successfully develop their
products without schedule delays

or cost over runs. To this end, as
Dr. Cross points out, experience
counts. Similarly, it is
management’s function to
eliminate unnecessary tasks,
streamline activities, and increase
work time while the staff reduces
time per task, and reduces or
eliminates backtracking. Having
a well trained, fully collaborative
team is an essential ingredient for
success. The core of the team
should be full participants in
project planning. The core of the
team should stay together from
start to finish. Support tools
should be provided to those
skilled in using them. Quality
and configuration management
should be imposed from within,
anytime, anywhere development
and the use of virtual offices
provides an atmosphere for
employee satisfaction.

Construction
This is the phase where
prototypes are formed, products
developed, and systems
produced. It is the crucible of the
architecture and tools and the
staff and managers who mold and
construct them. This is what we
have been waiting for, the
answers to our questions. We can
see the effects of inputs on
outputs and marvel at sometimes
unexpected but correct results.
We also see faults and
shortcomings as well. We can
determine how robust our
products and systems are and if
prototypes should be further

Continued on page 8

STN

developed. We can assess risk
with far greater accuracy and
project the shelf life of our
efforts. We can see the quality of
our work. We can mark our
progress towards meeting time to
market, determine our status
relative to our competitors,
record the time to mature new
processes and estimate if our
efforts will scale if they are
prototyped. We can save
elements which can be reused.
We can consider how new
systems can improve our
business and streamline our
processes and procedures. We
can see if we are truly generating
new and valuable information.

It’s Not Over Until It’s Over
Once we have crossed the
construction hurdle and decided
to continue we enter the
implementation and support

phases. In other words, coding,
use and maintenance. The latter,
as we know, can be 90% of the
entire life cycle cost. It is here
where we continue our metrics
collection but with the counsel of
our users. It is here where we
continue to respond to
requirements and design changes,
make modifications, corrections,
and improvements. It is here
where we assess our true costs
and profits (hopefully no losses)
and calculate our Return On
Investment (ROI). It is here
where we begin to plan for the
future.

Conclusions
RAD has proven to be a valuable
software strategy. It is not
without pitfalls and risks. It
requires the right mix of
methodologies, tools, personnel
and management. Its use

8
RAD: A Brief Overview
Continued from page 7

depends upon complexity of the
domain or application, the
organizational environment, the
skills of staff and management
and the architectures and
infrastructures available. RAD Is
worthy of continued research and
capitalization.

About the Author

Mr. Hirschberg has over 40 years
experience in Software
Engineering, 25 years in the
government sector. He has
authored over 50 papers.

Morton A. Hirschberg
U.S. Army Research Laboratory

Aberdeen Proving Ground,
Maryland 21005

mort@arl.mil

http://www.arl.mil/

References
Boehm, Barry, Devnani-Chulani, Sunita and Egyed, Alexander, Editors; “Knowledge Summary: Focused
Workshop on Rapid Application Development”, USC, Los Angeles, 23-27 June 1997.

The Software Productivity Consortium. The 5th Member Forum Proceedings: Technologies for the Rapid
Development of Software, SPC-97091-CMC, Herndon. VA, November 1997.

The University of California, Davis; “Application Development Methodology“;
http://irlinux.ucdavis.edu/BillA/WEBADM/index.htm

STN

technology and synthesize a new
solution either by refining the
prototype or building a new one.
Once you and the customer agree
on the workings of the prototype,
write requirements that include
features, performance goals,
product costs, product quality,
development costs and schedule
estimates.

What do I mean by prototype?
Prototyping is the use of
approximately 30% of the
ultimate staff to build one or two
working versions of various
aspects of a system. It is not
production code but it may
eventually become pre-
production code or it may be
completely discarded. In the
prototyping effort, we are not
concerned with the
maintainability of the code nor
are we concerned with formally
documenting it. Code resulting
from prototyping is often used to
train the programmers. Only
after we have written
specifications resulting from the
experience with the prototype
should we start the formal
development process. If we are
fortunate enough that some of the
code that was developed for the
prototypes can be carried
forward, that's great, if not, there
is no loss.

9
Importance of Software Prototyping
Continued from page 3

A prototype produces "running"
software and the production
development produces "working"
software.

Recent project experience has led
to the widespread acceptance of
the concept that early prototyping
is fundamental to the success of
operations supporting software
products.

The reasons why prototyping is
fundamental include:

1) The prototype provides a
vehicle for systems
engineers to better
understand the environment
and the requirements
problem being addressed.

2) A prototype is a
demonstration of what's
actually feasible with
existing technology, and
where the technical weak
spots still exist.

3) A prototype is an efficient
mechanism for the transfer
of design intent from
system engineer to the
developer.

4) A prototype lets the
developer meet earlier
schedules for the
production version.

5) A prototype allows for early
customer interaction.

6) A prototype demonstrates
to the customers what is
functionally feasible and
stretches their imagination,
leading to more creative
inputs and a more forward-
looking system.

7) The prototype provides an
analysis test bed and a
vehicle to validate and
evolve system
requirements.

About the Author

Mr. Bernstein is president of the
Center of National Software
Studies and is a recognized
expert in Software Technology.
He provides consulting through
his firm Have Laptop - Will
Travel and is the Executive
Technologist with Network
Programs, Inc. building software
systems for managing telephone
services.

Mr. Bernstein was an Executive
Director of AT&T Bell
Laboratories where he worked
for 35 years.

lberstein@worldnet.att.net

STN

The bottom line is that
experience counts. The study
coined the term “unprecedented
systems” to describe systems in
which these risks were present.
An experienced team, developing
a similar system to one that it has
previously developed, with a
customer and end user with
whom it can communicate well,
is much more likely to produce
high-quality software-intensive
systems on time and at cost.

With this as backdrop, I contrast
my own experience as a
computer scientist and software
engineer. My formal training
(some would say “formal” is too
strong given that my graduate
work was in machine
intelligence) focused on Rapid
Prototyping. This was during the
late 1970s and early 1980s, the
early and exciting days of the
first commercial expert systems.
In the laboratory, our research
prototypes were useful tools for
experimental research. To our
commercial counterparts, rapidly
developed prototypes were often
“throwaways.” They were often
too fragile to scale into a
hardened, deliverable system.
But they served a critical
purpose, they enabled one to
quickly capture an explicit and
inspectable representation of
requirements and depict them in
a meaningful way to end users.
The tools of the day allowed one
to work interactively with end
users to evolve a more complete

understanding of those
requirements. In effect, they
provided a means of
communication through which a
development team (including
users, maintainers, and
management) could discuss and
reach common understanding of
the requirements.

Many have criticized Rapid
Prototyping, or as it is now more
frequently called, Rapid
Application Development
(RAD)—as lacking rigor, leading
to fragile systems that do not
scale, and serving to raise end
user and management
expectations to unrealistic levels.
These criticisms are valid, unless
a more disciplined approach to
RAD is followed that couples
RAD with the lessons learned in
productivity and quality. The
approach I propose is based on
Boehm’s spiral model [5]. In the
spiral model, a complete
representation of the system is
produced and tested during each
development cycle (or spiral).
Each spiral addresses a particular
risk, with the most serious risks
addressed in the earliest cycles. I
have used this approach in
several successful systems [6,7],
and variations have also been
discussed in the literature [8].

A proposed approach to
disciplined RAD would entail
these steps:

1. Scenario-based design and
analysis

2. Architecture design and
analysis

3. Component specification
with maximum reuse

4. Rapid development of
remaining modules

5. Frequent testing with end
users and systems personnel

6. Field with support tools to
allow for evolution

The progress in software
technology now makes this
approach much more likely. Step
1 addresses the major source of
risk described, requirements.
Scenario-building tools allow
rapid development of cases to
illustrate system operation, which
in turn are useful for defining,
refining, and communicating an
understanding of requirements.
Because end users and
management often see ways to
improve their work processes as
a result, this approach has also
proven useful in business
reengineering. A by-product of
this approach is the capture of
test cases that can be used for
user-centered testing at later
stages in the system
development. Thus, scenario-
based approaches provide a
useful way to do requirements
analysis.

Steps 2 and 3 address technology
risks. As in other engineering
fields, it is useful to define the
architecture early during system
development and to conduct

Toward Disciplined Rapid Application Development
Continued from page 5

10

Continued on page 11

STN

trade-off analysis to assess
attributes such as data
throughput, usability, and
security issues. Too many past
failures are be attributed to
failure to understand a technical
constraint until realization of the
software system in executable
code. Recent advances in
software architecture
development and analysis (for
example see [9]) provide an
engineering basis for early
architecture specification. In
addition, a lesson learned from
reusable software development is
the criticality of software
architecture in which to embed
reusable software components.
Components that do not exist or
that cannot be easily retrofitted
into the architecture can be
developed using a rapid
prototyping approach (step 4).
Requirements and architecture
provide design constraints to
bound and guide the
development of these modules.

Steps 5 and 6 are also very
important. It is critical that end
users and system maintainers
participate regularly in testing.
Though I list it as a separate step
(a final test before delivery needs
to be done) it is also useful to use
scenario-based test data to assess
the output of each step. Lastly,
as requirements will change over
the life cycle of the system, it is
important to consider how
systems will be used and will
likely evolve, and then plan for
that evolution.

Not explicit in the above
approach is mitigation of risks
associated with people and
process. It is my belief that
process improvement, under such
approaches as the Capability
Maturity Model (sm) for
Software [10], is not inconsistent
with RAD. The Capability
Maturity Model (CMM) suggests
what should be done, not how to
do it. The discipline in the above
approach comes from having

Toward Disciplined Rapid Application Development
Continued from page 10

11

well-defined and understood
processes. In addition, training
for new employees and
continuing education for all
employees is an important aspect
to ensure that the development
team can cope with technical
change.

So how will we characterize the
first decade of the new
millennium? Trends suggest we
will have more powerful
computing coupled with a low-
cost, high-bandwidth
communication infrastructure.
There will be continued
downsizing of organizations and
more outsourcing. There likely
will be marketplaces for reusable
objects and software
components. My bet is that a
disciplined RAD approach will
become the de facto approach for
the development of software-
intensive systems.

About the Author

Stephen E. Cross - Director,
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

sc@sei.cmu.edu

http://www.sei.cmu.edu/

STN

References
1. Diaz, M and Sligo, J. “How Software Process Improvement helped Motorola,” IEEE Software, September 1997,

vol.14, no.5, p. 75-81.

2. Haley, T. “Raytheon’s Experience in Software Process Improvement,” IEEE Software, November 1996, Vol. 13,
No. 6, November p. 33-41.

3. Fox, C. and Frakes, W. (Eds), Special Issue on the Quality Approach: Is it Delivering?, Communications of the
ACM, June 1997, vol. 40, no. 6.

4. Sylvester, R.J. and Stewart, M. “Unprecedented Systems,” Encyclopedia of Software Engineering,
Marciniak, J. (Ed), J. Wiley, 1994.

5. Boehm, B. “A Spiral Model of Software Development and Enhancement,” Computer, May 1988, vol. 21, no. 5,
p. 61-72.

6. Wiederhold, G. and Cross, S. “Alternatives for Constructing Computing Systems,” in Computers as Our Better
Partners, Yahiko Kambayashi (Ed), ACM Japan Symposium, World Scientific Book Co., pp. 14-21, 1994.

7. Cross, S. and Estrada, R. “DART: an Example of Accelerated Evolutionary Development,” Proceedings of the
Fifth IEEE International Workshop on Rapid System Prototyping, Villard de Lans, France, June 1994.

8. DeBellis, M. and Haapala, C. “User-Centric Software Engineering,” IEEE Expert, February 1995, vol. 10, no. 1.

9. Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice, Addison Wesley, 1998.

10. See http://www.sei.cmu/technology/

sm - Capability Maturity Model is a service mark of Carnegie Mellon University.

Toward Disciplined Rapid Application Development
Continued from page 11

12

prototype, it is possible that
execution can halt unexpectedly.
Robustness can be built into
CAPS prototypes, but automated
methods for testing these
qualities are not included.
Manual methods are possible, but
would severely increase
development time.

Portability is a different matter.
Current versions of CAPS run on
SunOS and Solaris, but most
software in use by the military
runs on PCs. This means that
prototypes built using CAPS
could be demonstrated to the
customer on UNIX machines, but
would have to be translated into
something that would run on
PCs. Although this is not a severe
limitation, it does make it

difficult to deliver the prototype
to the customer immediately
upon validation.

Current software development
methods and tools are insufficient
to produce usable code in a
reasonable amount of time. Rapid
prototyping methods approach
the needed capability, but are not
yet up to the task. An incremental

Rapid Prototyping and Incremental Evolution
Continued from page 4

software development
methodology, modelled after the
rapid prototyping paradigm used
in a system like CAPS, is needed
to reduce development time and
put something usable in the
hands of the customer quickly.

About the Author

Major David A. Dampier is a
professor at the National Defense
University in the Information
Resources Management College.

He may be contacted at:

Major David A. Dampier Ph.D.
National Defense University
Building 62, 300 5th Avenue

Fort Lesley J. McNair,
Washington, D.C. 20319

http://wwwndu.edu/

STN

Book Review of Software Engineering: A Practitioner’s Approach
Continued from page 6

13

Continued on page 14

 In chapter 4 of the text, we find
a good introduction to the
software process and project
metrics. It is gratifying to see his
early introduction to Humphrey’s
Personal Software Process (PSP)
prior to addressing the project
oriented metrics of size and
quality. Pressman provides more
emphasis on function-oriented
size metrics than on the
traditional line-of-code models,
but provides ample links to these
at the end of the chapter.
Additional material on the more
technical/product oriented
metrics is found later in the text.

In chapter 5, the author covers
software project planning. This
shows the intimate relationship
between the material introduced
in chapter 4 on metrics and
measurement to the planning
process. Pressman’s primary
emphasis is on estimating, and he
covers both line of code and
function point based models. He
emphasizes five questions that
need to be answered: (1) How
long will it take? (2) How much
effort is required? (3) How many
people will be involved? (4) How
many resources (Hardware/
Software) will be required?
(5) What are the risks and how
do we manage the known risks?
Moving on from planning and
estimating, Pressman provides
good coverage of the current
thinking on Risk Management in
chapter 6. In this chapter you
are introduced to Risk
Management concepts used by
Pressman, Charette, Boehm, the
SEI, the Air Force and others.
Unlike previous texts, there is

considerable attention given to
this important topic and this adds
much to the value of the book.
Chapter 7 is devoted to Project
Scheduling and Tracking which
obviously draws much upon the
material covered in the previous
chapters. Chapter 8 on Software
Quality Assurance addresses
SQA from the viewpoint that
quality assurance encompasses
(1) a quality management
approach, (2) effective software
engineering technology,
(3) formal reviews that are
applied throughout the process
(4) a multitiered testing strategy,
(5) control of software
documentation and the changes
made to it, (6) a procedure to
assure standards compliance and
(7) measurement and reporting
mechanisms. As can be seen
from this list, Pressman continues
to build upon what he has
introduced before. By doing this,
Pressman provides the reader
with a cohesive and structured
viewpoint of software
engineering based upon a core set
of principles that are elaborated
upon as you traverse the text.
However, there is an unfortunate
omission in this section with the
absence of a mention of Michael
Fagan and the Fagan Inspection
Process. I feel that a student
using this text without a teacher,
would never come upon the name
of this important figure or the
inspection process which is often
named after him. Many of the
references in the back of this
chapter refer to Fagan’s work, yet
not one reference is directed to
Fagan’s original papers.

Chapter 9 concludes this section
by providing a well structured
overview of configuration
management.

Part Three of the text is devoted
to Conventional Methods for
Software Engineering
concentrating on Systems
Engineering, Analysis, Design,
Testing and Metrics. As can be
expected, this large area demands
the most coverage and over 300
of the book’s 800+ pages is
devoted to this core area. When
you consider that Part Four is
devoted to Object Oriented
Techniques and takes an
additional 120+ pages, over half
of the text is devoted to the core
concepts of analysis, design and
testing. This is very appropriate
and provides good coverage to
current methodologies that the
software engineering practitioner
needs to know. Relatively new
techniques in Quality Function
Deployment (QFD), modeling
and prototyping are well covered
in chapter 11. Chapter 12
introduces various methodologies
and their notations so that the
reader is introduced to a variety
of analysis modeling techniques.
Chapter 13 introduces the design
concepts of abstraction,
refinement, modularity,
architecture, hierarchy, structural
partitioning, data structure,
software procedures and
information hiding. From there,
effective modular design based
on functional independence
measured by cohesion and
coupling concepts is well

STN

Book Review of Software Engineering: A Practitioner’s Approach
Continued from page 13

14

covered. Chapter 14 provides an
extensive coverage of various
design methods and chapter 15
extends these for real-time
systems. Chapters 16 and 17 are
devoted to testing techniques.
Chapter 18 expands on the
material in Part Two that was
devoted to measurement and
metrics and focuses on technical
metrics in contrast to
management metrics.

Part Four of the text, as noted
above, proceeds from Part Three
and tackles the important area of
Object-Oriented Software
Engineering. Pressman covers
analysis, design and testing of
object-oriented software, but
does not discuss object-oriented
programming. As this subject
will be covered in most
Computer Science curriculums in
the programming courses, this
seems to be a prudent choice and
helps keep the size of the text
down. Coverage of a variety of
methods including Booch, Coad
and Yourdon, Jacobson,
Rumbaugh and Wirfs-Brock
methods are outlined in
chapter 20. The important area
of object-oriented testing is
covered in chapter 22.

Part Five of the text discusses
several advanced topics with
separate chapters devoted to
formal methods, cleanroom,
software reuse, reengineering,
client-server software
engineering and Computer Aided
Software Engineering or CASE.
The book concludes with an
exploration of the scope of
change in the field and how this

change itself will affect the
software process in the future.

This impressive work provides
an virtual encyclopedia of the
present state of software
engineering with several unique
innovations. First is the use of
the World Wide Web for
references. Second is the fact
that Pressman keeps these
references up-to-date on his own
web site at http://www.rspa.com.
And finally, this text attempts to
look at Software Engineering
from a holistic and structured
perspective, providing a travel
guide or roadmap that takes you
from one place and builds upon
the concepts developed as you
move from chapter to chapter.
Because of this, I believe that the
book is best read, at least the first
time, cover to cover. There are
however some minor problems
and obstacles that should have
been found in the initial proof
reading. Several of the URLs
noted in the back of each chapter
and on his web site are incorrect.
As an example, in chapter 2, the
URL for the Software
Productivity Consortium is
shown to be
http://software.software.org/vcoe/
home.html and it should be
http://www.software.org/vcoe/
home.html. Several other typos
were found. On p.585 James
Rumbaugh is spelled Rambaugh
and the negative impact of this
typo is compounded by the fact
that the reference on p. 611 is
also for Rambaugh. Mistakes
like these make it very difficult
for the student to use the
references. I need to note, that I

was using the first print for my
review. These mistakes are being
corrected in a soon to be issued
third printing and errata sheets
for the first two additions are
available at Pressman’s Web site,
http://www.rspa.com. I strongly
recommend that you get the latest
printing. Even considering these
errors, the text takes a giant step
forward and provides the model
for all future software
engineering texts. It is a virtual
encyclopedia that can be used to
teach both up-coming and
experienced software engineers. I
have used Pressman’s previous
editions in my classes on
software engineering. I find this
edition to be a major
improvement. With the errors
being corrected, this book will
become an instant classic. This is
a truly exceptional reference
work that deserves to be on every
software engineer’s shelf and
used regularly. It should be
noted that a complete video
curriculum is available to be used
with the text. These videos
would be helpful if you are
planning to cover this material
for large organizations.

About the Reviewer

Marshall Potter is an Adjunct
Associate Professor at the
University of Maryland.

Marshall Potter
Special Assistant for Computing

and Software Technologies
Office of the Director,
Defense Research and

Engineering, Information
Technologies Directorate

pottermr@acq.osd.mil

STN

STINET is a Defense Technical
Information Center (DTIC)
Service !

15

Secure STINET’s Customization
provides the power to create and
modify your own personalized
web page. See what has changed
in STINET by filtering out what
is old and concentrating on what
is new…set up a personal profile
based on subject fields and
groups and automatically receive
citations via E-Mail to the latest
accessions in DTIC’s Technical
Report collection twice a
month…save search queries for
both the Technical Report and
Work Unit Information System
collections for reuse.

Abstracts are now included with
citations to unclassified/limited
documents in the Technical
Reports Bibliographic Database.
Viewing abstracts is based on
individual user profile access
restrictions. If your profile does
not permit you to view a
particular citation’s abstract, you
will be allowed to view the rest
of the citation, minus the
abstract.

The Dynamic Secure STINET Service Adds New Features
Pat Tillery - DTIC Product Management Branch

Over 3,000 full-text technical
reports are now available for
viewing and downloading.

Special Collections highlights
reports found in DTIC’s
Technical Reports collection
based on the source, topic, or
targeted group. In addition to
setting up your own search
parameters, you can search using
preestablished profiles developed
by retrieval experts.

The Partnership for Peace
Information Management
System (PIMS) is designed to
enhance the education of U.S.
Service school students. Topic
searches developed by DTIC for
the PIMS community provide
information ranging from air
traffic control management to
public affairs. PIMS also offers
students the capability to
construct custom searches for
information not covered in the
topic searches.

Subscribe Today

The subscription for the Secure
STINET Service access via a
web client is $50 per year/per
subscriber.

To subscribe to Secure STINET
Service, contact DTIC’s
Registration Branch:

Telephone: (703) 767-8272,
DSN 427-8272

Toll Free: (800) 225-3842
(menu selection 2,
option 2,
sub-option 2)

Fax: (703) 767-8228,
DSN 427-8228

E-Mail: reghelp@dtic.mil

Direct Questions concerning this
product to:

Product Management Branch,
DTIC-BCP, (800) 225-3842
(menu selection 2, option 3),

(703) 767-8267, or
DSN 427-8267.

STINET now has added the following…

DoD DACS Products & Services Order Form

Name: Position/Title:

Organization: Acronym:

Address:

City: State: Zip Code:

Country:

Telephone: Fax:

E-mail:

Product Description Format Quantity Price Total

The DACS Information Package
❏ Including: Software Tech News newsletter, an introduction to

the DACS and a Products & Services Catalog Document FREE FREE

Empirical Data
❏ Architecture Research Facility (ARF) Error Dataset Disk $ 50
❏ NASA / Software Engineering Laboratory (SEL) Dataset CD-ROM $ 50
❏ NASA / AMES Dataset CD-ROM $ 50
❏ Software Reusability Dataset Disk $ 50
❏ DACS Productivity Dataset Disk $ 50

Technical Reports
❏ A Business Case for Software Process Improvement Document $ 25
❏ ROI from Software Process Improvement Spreadsheet Diskette $ 40
❏ A History of Software Measurement at Rome Laboratory Document $ 25
❏ An Analysis of Two Formal Methods: VDM and Z Document $ 25
❏ An Overview of Object-Oriented Design Document $ 25
❏ Artificial Neural Networks Technology Document $ 25
❏ A Review of Formal Methods Document $ 25
❏ A Review of Non-Ada to Ada Conversion Document $ 25
❏ A State of the Art Report: Software Design Methods Document $ 25
❏ A State of the Art Review: Distributable Database Technology Document $ 25
❏ Electronic Publishing on the World Wide Web:

An Engineering Approach Document $ 5
❏ Object Oriented Database Management Systems Document $ 25
❏ Software Analysis and Testing Technologies Document $ 25
❏ Software Design Methods Document $ 25
❏ Software Prototyping and Requirements Engineering Document $ 25
❏ Software Interoperability Document $ 25
❏ Software Reusability Document $ 25

Bibliographic Products
❏ Rome Laboratory Research in Software Measurement Document $ 25
❏ DACS Custom Bibliographic Search Diskette $ 40
❏ DACS Software Engineering Bibliographic Database (SEBD) CD-ROM $ 50

Number of Total
Items Ordered Cost

Method of Payment:
❏ Check ❏ Mastercard ❏ Visa

Credit Card # ___ Expiration Date _____________________________

Name on Credit Card ___________________________________ Signature __________________________________

Mail this form to: DACS Customer Liaison Telephone: (315) 334-4905
Data & Analysis Center for Software Fax: (315) 334-4964
P.O. Box 1400, Rome, NY 13442-1400 E-mail: cust-liasn@dacs.dtic.mil

FREE withSpreadsheet

SALE
Item!

